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ABSTRACT The 1986 nuclear reactor acci-
dent at Chernobyl caused nonuniform radiocontamina-
tion of air and land, primarily within regions of the
former Soviet Union and Western Europe. Major expo-
sure groups included the reactor workers, villagers
evacuated from within 30 km of the accident, the
’’liquidators’’ who decontaminated the evacuation zone
afterward, those in radiocontaminated villages not
evacuated, and ‘‘others’’ not in the latter categories.
The possibility of being exposed to radiation caused
considerable anxiety, especially among pregnant
women. Were teratogenic levels of radiation ($0.1 Gy)
exposure attained? To date there is no consistent proof
that this level of radiation exposure was received.
Nevertheless, thousands of induced abortions were
performed. Radioiodine (I-131) caused thyroid cancer
in young children in portions of Belarus, the Ukraine,
and Russia. It is not known but very possible that I-131
fetal thyroid exposure contributed to this observation.
The relationship between mental retardation and radia-
tion exposure has not been confirmed. Leukemia and
other cancers, while predicted for the liquidators (mainly
males), has not been found in the other exposure
groups at this time. Investigations of aborted fetuses
and newborns in Belarus showed an increase in the
frequency of both congenital and fetal abnormalities in
high and low Cs-137 contaminated regions. This study
is unreliable due to detection and selection biases.
Accident and environmental factors unrelated to radia-
tion doses may have contributed to these observations.
Occasional positive teratogenic studies in less contami-
nated regions of Western Europe are suspect because
of the low radiation doses received. There is no
substantive proof regarding radiation-induced terato-
genic effects from the Chernobyl accident. Teratology
60:100–106, 1999. r 1999 Wiley-Liss, Inc.

The worst accident in the history of nuclear power
occurred at 1:23 AM on Saturday, April 26, 1986. At this
time two explosions destroyed the core and portions of
the nuclear reactor building of Unit 4 RBMK at Cher-
nobyl, in the north-central Ukraine (IAEA, ’96). This
accident subjected the nuclear reactor fuel to very high
temperatures (2,000°C), resulting in the release of
volatile radionuclides and finely dispersed radiocontami-
nated material. The resulting plume took several paths
over time, resulting in a nonuniform deposition of
radioactive material in air and on land.

The fire was extinguished and the releases stopped
10 days after the accident. The quantity of radioactivity
released over this time period approximated 1.2E119
Bq, with 1.5E118Bq and ,0.09E118Bq, comprising
I-131 (T 1/2p 5 8.08 d) and Cs-137 (T 1/2p 5 30 y),
respectively (Borzilov and Klepikova, ’93; IAEA, ’96).
The radioactive plume exposed unsuspecting individu-
als to radiation, including pregnant women whose
embryos/fetuses were exposed to a proven teratogen.

This report examines and comments on data regard-
ing embryo/fetal radiation exposure associated with the
Chernobyl accident.

KNOWN FETAL EFFECTS OF RADIATION

As with other teratogenic agents, the risk associated
with irradiating the fetus is a function of both the total
dose and postconceptional time. These effects are sum-
marized in Table 1 for a 1-Gy acute dose in rodents and
correlated according to human gestational age (Brent,
’80). The types of effects following whole-body irradia-
tion are listed in Table 2 (ICRP, ’93; Atake and Schull,
’93). As stated, the threshold acute dose for malforma-
tion of fetal organs is approximately 0.1 Gy, with frank
congenital malformations occurring at 0.2 Gy (Jensh
and Brent, ’87); the risk for severe mental retardation is
approximately 30 IQ units per Gy and is not always
related to small head size; the risk of fatal cancer is
approximately 6% per Gy fetal irradiation (Doll and
Wakeford, ’97).

The internalization of I-131 for the first 8 weeks of
conception and Cs-137 in the entire pregnancy would
represent a risk to the fetus only if the whole-body
threshold dose of $0.1 Gy were reached. The mother
would have to ingest 1.39 GBq (early) to 0.37 GBq (late)
of I-131 to produce a 0.1-Gy fetal dose (Russell et al.,
’97). The primary concern for I-131, however, would be
the fetal thyroid radiation dose after week 8, with
secondary concern for the whole body. With Cs-137, a
muscle seeker, the required radioactivity would be 8
kBq (early) to 12 kBq (late) (Caywood et al., ’97). With
I-131, irradiation of the fetal thyroid gland after weeks
8–12 would create an added risk (Fisher, ’75). Mental
retardation secondary to fetal hypothyroidism has been
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reported in children born to mothers who received 0.37
MBq or more of I-131 NaI (Staffer and Hamburger, ’76).
The maximum fetal thyroid dose occurs at month 6 and
approximates 3,108–4,440 cGy/37 MBq of the mother’s
intake (Stabin et al., ’91). Adding to the internal
exposure would be that received externally from ambi-
ent radiation levels. However, these levels would be
attenuated by the surrounding mother’s tissue, thus
reducing the fetal dose (Ragozzino et al., ’86; Wagner et
al., ’97). The latter, reported to approximate 6 cm from
the anterior skin surface, would absorb completely the
beta radiation and ,40–50% of I-131 and Cs-137
photons (Johns and Cunningham, ’69).

The fetal risks mentioned above are from acute
radiation doses, while those received from the Cher-
nobyl accident have been protracted. The latter mode of
exposure is believed to incur a smaller risk than the
former for a given radiation dose (BEIR, ’90). This is

especially relevant during the various stages of fetal
development.

EARLY INTERVENTION, FALLOUT PATTERNS,
AND RADIATION EXPOSURES

Early intervention

Early human intervention concentrated on fighting
the fire within the reactor building. The death toll
within 3 months of the accident was 31 of the 200
individuals (the majority were male) who suffered acute
whole-body external radiation effects from 100–1,500
cGy as members of the reactor operating staff and
fire-fighting crew (Mettler et al., ’96). Based on numer-
ous tests of air, water, and soil, a 30-km zone was
established from which 116,000 individuals were evacu-
ated 1–11 days after the accident (UNSCEAR, ’88).
Their average protracted external and inhalation radia-

TABLE 1. Risk associated with irradiation during fetal development (Brent, ’80)*

Preimplantation Organogenesis
Early
fetal Midfetal

Late
fetal

Postconception time (weeks) 1 2–7 8–15 16–25 .25
Effects

Lethality 111 1 1 2 2
Gross malformations 2 111 1 1 2
Growth retardation 2 111 11 1 1
Mental retardation 2 2 111 1 2
Sterility 2 1 11 1 1
Cataracts 2 1 1 1 1
Other neuropathology 2 111 1 1 1
Malignant disease 2 1 1 1 1

*1 Gy acute dose in rodents, correlated according to human gestational age. 2, no observed
effect; 1, demonstrated; 11, readily apparent effect; 111, occurs in high incidence.

TABLE 2. Types of radiation effects following irradiation in utero (ICRP, ’93;
UNSCEAR, ’93; Atake and Schull, ’92; Jensh and Brent, ’87; Doll and Wakeford, ’97)

Time after
conception Effect

Normal incidence
in liveborn

First 3 weeks No deterministic or stochastic effects
in liveborn child

Weeks 3–8 Potential for malformation of organs* 0.06 (1 in 17)
Weeks 8–25 Potential for severe mental retarda-

tion**
5.0E 2 03 (1 in 200)

Week 4 throughout pregnancy Cancer in childhood or in adult life*** 1.0E 2 03 (1 in 1000)

*Malformation of organs appears to be a deterministic effect, with a conservative threshold
dose in man, estimated from animal experiments, to be about 0.1 Gy, with frank congenital
malformations at 0.2 Gy.
**The risk for severe mental retardation is associated with an observed shift in intelligence
quotient (IQ). The shift is estimated as 30 IQ units per 1 Gy in the brain during weeks 8–15
after conception, with lesser IQ shifts during weeks 16–25. At absorbed doses in the brain on
the order of 0.1 Gy, no effect would be detectable in the general distribution of IQ in an
irradiated group. At somewhat larger absorbed doses, however, the effect might be sufficient
to show an increase in the number of children classified as severely retarded. Radiation
small-head size has not been demonstrated to be a threshold and, when induced prior to 8
weeks, was not related to intellectual and behavioral impairment.
***The risk of fatal cancers expressed in childhood or in adult life for individuals irradiated in
utero may be similar to the risk to individuals irradiated in the first decade of life. For
whole-body irradiation of infants and children, the cancer risk is approximately 6% per Gy.
The baseline whole population cancer mortality is 1 in 6.7–1 in 4, the difference being a
function of country.
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tion dose was estimated to range between 0.01–38.3
cGy (Likhtarev et al., ’94).

Fallout patterns

The release of radioactive material beyond the 30-km
zone was determined primarily by wind direction and
rainfall. The latter enhanced the ground deposition of
radioactive material. This resulted in nonuniform
ground deposits throughout Eastern and Western Eu-
rope. The ground deposition of radionuclides was ex-
pressed as activity/area with units of MBq/m2. Initially,
areas of Belarus, the Ukraine, and Russia showed I-131
levels of 0.2–40 MBq/m2 (Balter, ’96). Later, Cs-137
levels up to 1.51 MBq/m2 dominated the landscape in
these countries (Ivanov et al., ’96). As of 1996, no
measurable I-131 remained, and about 85% of the
Cs-137 was still present (Dreicer and Alexakhin, ’96).
The highly contaminated area encompassed approxi-
mately 20% of Belarus, 8% of the Ukraine, and 0.5–1%
of Russia, an area about the size of Kentucky (IAEA,
’96). To put the ‘‘activity/area’’ unit in proper perspec-
tive, consider the following example regarding natu-
rally occurring radioactive material. Uranium-238 (T
1/2p 5 4.5E19y) in igneous rock represents a ground
concentration of 0.81 MBq/m2 (Shapiro, ’90). This radio-
nuclide plus its decay products represent an external
annual dose equivalent of 0.24 mGy/year at 1 meter
above the ground (Shapiro, ’90). The annual cumulative
dose equivalent at 1 meter from ground contamination
(1 cm depth) of Cs-137 at 1.5 MBq/m2 and I-131 at 40
MBq/m2 would approximate 5 mSv and 8 mSv, respec-
tively (Golikov and Balonov, ’93). Residual radioactive
material in the global environment as of 1996 consisted
primarily of Cs-137 (6.8E116Bq)(Dreicer and Alexa-
khin, ’96).

The liquidators

Besides the on-site respondents, 600,000–1 million
persons, mostly adult males, participated as liquidators
within the 30-km evacuation zone. Greater than 85% of
this group received an external radiation dose over 2
months of 0.1 Sv, with 10% receiving 0.25 Sv and the
remaining individuals up to 0.50 Sv (IAEA, ’96). This
group has been difficult to follow after completing their
liquidation tasks. However, it is improbable that preg-
nant individuals took part in this highly risky cleanup.

Controls/exposure in the three republics

The 270,000 inhabitants of areas within Belarus, the
Ukraine, and Russia where ground contamination was
at least 0.6 MBq/m2 of Cs-137 were subjected to strict
radiation safety controls, while those in less contami-
nated areas of 0.04–0.6 MBq/m2 experienced more
relaxed restrictions in this regard (IAEA, ’96). The
controls included shelter, evacuation, and control of
food and water consumption, as well as the issuance of
KI, when appropriate (Bolanov, ’93; Mettler et al., ’96;
Kondrusev, ’89; Jaworowski, ’86). While maternal expo-
sure to pharmacologic quantities of iodides may harm

the fetal thyroid (Mandel et al., ’94), it will also protect
the fetal thyroid against radioiodine (Noteboom et al.,
’97). Transfer factors from fallout to the thyroid would
also be important (Beno et al., ’92). The estimated
effective radiation doses, which will be received over 70
years for those in the contaminated areas, will range up
to those received from natural environmental radiation
for this time period (IAEA, ’96).

The remaining combined population (,280 million)
in the three republics, where Cs-137 contamination
levels were less than 0.04 MBq/m2, received approxi-
mately 0.26 mSv during the first year (IAEA, ’96). The
effective dose equivalent from external gamma radia-
tion was estimated for various villages in the Bryansk
region of Russia from 1986–1991 (Golikov and Balonov,
’93). For one town with a terrestrial Cs-137 contamina-
tion level of 0.73 MBq/m2 in 1986, the cumulative
radiation dose was determined to be 0.96 and 1.84 mSv
for individuals living in large buildings and wooden
houses, respectively. This amount of radiation dose is
less than the worldwide average natural background
radiation of 2.4 mSv (UNSCEAR, ’93). In a 1986 study,
the average monthly effective dose to inhabitants of a
Russian settlement with a Cs-137 contamination level
of 1.56 MBq/m2 was 0.86 mSv/month, which approxi-
mates the ambient natural background of 0.744 mGy/
month (Erkin and Lebedev, ’93; Golikov and Balonov,
’93). This exposure level resembles the 0.50 mSv/month
allowed for a radiation worker’s developing fetus (NRC,
’91). The latter two examples serve to illustrate that the
ambient radiation exposure for a majority of contami-
nated villages away from the exclusion zone repre-
sented little risk to the developing fetus. The radiation
exposure would also be a function of working and living
conditions. The exposure would be less for those work-
ing indoors and living in brick houses and greater for
those working outdoors and living in wooden houses
(Erkin and Lebedev, ’93).

While living within a radiocontaminated environ-
ment increases the risk for carcinogenic effects, an
increase for deterministic effects can only occur if the
threshold dose for the effect is surpassed (Table 1). The
Cs-137 body burden was measured for 1,228 men,
women, and children who had emigrated from the
Ukraine, Belarus, and Russia to Israel (Quastel et al.,
’97). These authors reported a maximum back calcula-
tion of 6 Bq/kg (0.75 kBq) Cs-137. Women and children
had considerably lower Cs-137 body burdens because of
lower muscle mass and faster excretion than adult
males. All Cs-137 body burdens were too low for any
concern regarding the health of the emigrés (Quastel et
al., ’95).

Western Europe

Lesser quantities of radioactive material deposited in
regions distant from the reactor site and remnants of
the plume were measurable over the entire northern
hemisphere. Material released into the atmosphere
dispersed according to the prevailing winds, and a
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portion was accumulated on the ground via wet
and/or dry deposition. While many radionuclides were
released, I-131 (T 1/2p 5 8.08 d) and Cs-137 (T 1/2p 5 30
y) dominated. The contamination levels in Western
Europe ranged from 0.001–0.04 MBq/m2, with a re-
ported 50-year cumulative effective dose of 0.03–2
mSv (UNSCEAR, ’88). Thyroid bioassays of European
travelers returning to the United States shortly
after the accident exhibited miniscule I-131 uptakes
(Castronovo, ’86). Two pregnant travelers in this
group, who hiked in the rain in Bavaria and north/
south Germany, had thyroid uptakes of 111–148 Bq
of I-131 (Castronovo, ’87). Thus, it became apparent
that individuals who visited several European coun-
tries were slightly contaminated with radioactivity
by the accident. The Chernobyl-related radiation doses
to populations in countries within the northern
hemisphere during the first year averaged just
0.80 mSv (IAEA, ’96). Nevertheless, widespread fears
regarding fetal effects prompted many countries be-
yond the exclusion zone to investigate this topic. A
cluster of 12 cases of trisomy 21 occurred in West Berlin
9 months after the accident, when 2–3 cases were
expected (Sperling et al., ’91, ’94). The authors reported
a ‘‘several-fold increase’’ above the natural radiation
dose during the 9-day exposure period (Sperling et al.,
’94). These data differ from other negative reports
where radiation exposures were much higher (Little,
’93; Williams, ’94). A summary of these reports is given
in Table 3.

A significant increase in perinatal mortality in 1987
was reported in Germany after background equivalent
exposures (Korblein and Kuchenhoff, ’97). A response to
this report held any such excess to be due to factors
other than radiation (Rossi, ’97). Similarly, it is difficult
to accept in utero radiation from the Chernobyl acci-
dent as the causative agent for reported increase in
leukemia in Greek and German children because more
severely affected Belarus did not exhibit a similar trend
(Ivanov et al., ’96). Estimates of the maximum adult
effective dose in Western Europe during the first year
after the accident were reported to be 1.7 mSv (DeWals
and Dolk, ’90). At these low doses, teratogenic effects
have never been observed and are thus highly unlikely.

PREGNANCY TERMINATIONS

A well-documented health consequence of the Cher-
nobyl accident was the dramatic increase in pregnancy
terminations both near and far from the accident site.
There was widespread concern following reports of
environmental and food contamination. The resulting
anxiety regarding possible fetal radiation effects was
amplified by lack of information and official guidance,
and a persistent ‘‘nuclear phobia.’’ This led to an
increase in abortions, delays in planned conception,
and a greater demand for prenatal screening (DeWals
and Dolk, ’90; Rojas-Burk, ’92). During most of May
1986, there was panic among expectant mothers who
thought they had a high risk of giving birth to an

abnormal child. Countries outside the exclusion zone
reporting a reduction of births included Italy (Spinelli
and Osborn, ’91), Denmark (Knudsen, ’91), Norway
(Irgens et al., ’91), Hungary (Czeizel, ’91), and Greece
(Trichopoulos et al., ’87).

Fetal studies in Belarus and the Ukraine

A descriptive analysis of birth defects and malforma-
tions was performed in Belarus to assess whether such
rates correlated with areas having different levels of
Cs-137 contamination. A stereomicroscopic examina-
tion of ,21,000 5–12-week-old legal abortions from
1980–1991 showed all types of congenital malforma-
tions for zones containing at least 0.6 MBq/m2 Cs-137
when compared with controls from Minsk from 1980–
1991 (Lazjuk et al., ’93, ’94, ’97). In these latter studies,
however, no conclusions could be reached regarding
radiation-induced teratogenesis because the blinding of
the pathologists to zone and time period was not stated
and the time periods were not matched, suggesting a
possible selection bias. The prevalence of all types
of congenital malformations among live births from
1979–1991 increased for both contaminated and control
zones, also suggesting a selection bias. In addition, it
has not been possible to correlate individual radiation
doses with the incidence of congenital malformations
because not one pregnant woman received more than
0.1 Gy threshold dose during the entire pregnancy
(Lazjuk et al., ’93). Down syndrome was not increased
in frequency. The observed congenital malformations, if
real, could have been caused by nonradiation factors,
e.g., defective nourishment, chemical contamination,
and psychological stress (Lazjuk et al., ’93). Of the
evacuees from the Ukraine, 100 children were born at 6
months with no reported birth defects (Mould, ’88). A
retrospective analysis of the birth archives of Kiev’s two
largest obstetric hospitals between 1969–1990 showed
no pronounced changes for spontaneous miscar-
riages, congenital anomalies, and perinatal mortality
(Buzhievskaya et al., ’95). The Kiev Institute reported a
nonteratogenic maximum of 11.1 kBq of Cs-137 internal-
ized by pregnant women 1–3 months after the accident
(Mould, ’88). A brain damage-in utero study involving
,4,500 children born within 1 year of the accident or to
mothers evacuated from the 30-km zone showed no
correlation between mental retardation and radiation
exposure (Kreisel, ’95). Radiation exposures did not
approach those necessary for mental retardation as
reported previously for atom bomb survivors (Otake
and Schull, ’84). Other cancers and leukemia, to date,
have not been at statistically greater than normal
levels (Prisyazhniuk et al., ’95; Ivanov et al., ’96; Parkin
et al., ’96).

CONCLUSIONS

The scientific information available now shows no
evidence that the radiation exposures of pregnant
women from Chernobyl produced any harmful effects.
Perceptual competition has come from the lay press,
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with newspaper reporters playing up anecdotal stories
of children with birth defects and leukemia (Kotz, ’95).
In addition, the population of the former Soviet Union
was subject to haphazard radiation and chemical dis-
posal techniques which gave little thought to health of
the people or the land (Burkart, ’96). Taking such vast
environmental contamination into account when at-
tempting to ferret out possible Chernobyl-related radia-
tion effects is indeed a challenge (Serykh, ’96; Zayk-
ovskaya, ’96; Balter, ’95; Edwards, ’94). The former
Soviet Union will undoubtedly become a source for
documenting radiation effects, provided the necessary
studies are properly implemented (Davis, ’99). Neverthe-
less, no excesses in teratogenesis have been attributed
to the Chernobyl accident, which agrees with what has
been stated previously (Little, ’93; Bard et al., ’97).
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