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Abstract – This paper reviews our current knowledge of the mechanisms underlying the induction of bystander 
effects by low dose, low-LET ionizing radiation and discusses how they may be related to observed adaptive 
responses or other protective effects of low dose exposures. Bystander effects appear to be the result of a 
generalized stress response in tissues or cells. The signals may be produced by all exposed cells, but the response 
appears to require a quorum in order to be expressed. The major response involving low LET radiation exposure 
discussed in the existing literature is a death response. This has many characteristics of apoptosis but is p53 
independent. While a death response might appear to be adverse, the position is argued in this paper that it is in 
fact protective and removes damaged cells from the population. Since many cell populations carry damaged cells 
without being exposed to radiation, so called “background damage”, it is possible that low doses exposures cause 
removal of cells damaged by agents other than the test dose of radiation. This mechanism would lead to the 
production of “U-shaped” dose response curves. In this scenario, the level of “adaptive” or beneficial response 
will be related to the background damage carried by the cell population. This model may be important when 
attempting to predict the consequences of mixed exposures involving radiation and other environmental stressors.   

 
 

I. INTRODUCTION 
 

Radiation-induced bystander signals appear to 
coordinate cellular responses even in cells not directly 
exposed or traversed by radiation. This work has led to a 
paradigm shift in radiobiology over the last 5-10 years1-4. 
Prior to this, it was held that DNA double strand breaks 
and cellular survival/damage were inextricably linked and 
that radiation damage could be defined as a function of 
DNA double strand breaks. This is now being challenged 
because of an increasing number of studies that 
demonstrate indirect (i.e., non-DNA related) effects and 
coordinated tissue responses5. These appear to saturate at 
low doses and lead to a breakdown of the dose response 
relationship that dominates at high doses6, 7. The low dose 
mechanisms may mitigate or exacerbate the direct effects 
of the dose and dominate the results at doses below 0.5 
Gy7, 8. Signal production has been detected at doses as 
low as 5 mGy, although at these doses the recipient cell 
may transduce the signal in a different way9. Current 
conventional models of radiation dose response do not 
accommodate these new findings and as long as the 
mechanisms remain unclear, modelling low dose effects is 
difficult and uncertainty is high. 

While there is obvious interest in general in this field, 
the key applications are likely to be in radiation protection 
and biotechnology. A novel mechanism for coordination 
of tissue responses is clearly being induced by radiation 
and probably by other substances. This offers new 

avenues for development of drugs aimed not at cell 
destruction but at restoring the tissues own control and 
coordination of response following DNA damage. 
 

II. BYSTANDER EFFECTS AND ADAPTIVE 
RESPONSES 

 
Many of the newly recognized effects are similar to 

systemic stress or innate immune responses, in that there 
is no simple relationship between exposure and effect, 
and the outcome is not obviously dependent on dose or 
number of cells hit by radiation10-13. Mitochondria and 
reactive oxygen species appear to be important to the 
coordination and regulation of these effects14-17. So far, 
research by our group and by others has suggested that 
radiation causes hit cells to produce signals, which can be 
received by cells close to or distant from the targeted 
cell18-23. The recipient cells transduce the signals and 
appear to coordinate an appropriate (by definition 
ADAPTIVE) response. Responses recorded to date 
include initiation of apoptosis, differentiation or 
proliferation13, 24-26. These coordinated responses can be 
protective as, for example, an apoptotic response can 
remove an abnormal cell from the population, but the 
response can also involve fixation of mutations, induction 
of genomic instability or cellular transformation as pre-
malignant responses. Which response predominates 
appears to depend on genetic and environmental 
influences and not to be related to dose27, 28. 

mailto:seymouc@mcmaster.ca


 

III. WHAT ARE THE SIGNALING MECHANISMS? 
 

The nature of the signal(s) is (are) unknown, although 
the properties are becoming clearer. Much of the 
phenomenological data are suggestive of a very small 
(less than 1000 dalton) (lipo) peptide molecule or 
biogenic amine, but it is also possible to argue for long-
lived radicals leading to peroxide or aldehyde release 
from cells22, 29-31. The mechanisms by which the cells 
coordinate their responses are also unknown, but 
signaling which leads to persistently increased ROS and 
modulation of biochemical pathways in mitochondria 
(particularly HMP shunt) have been demonstrated15, 32-34.  
 

IV. MODELS TO STUDY BYSTANDER EFFECTS 
 

Many in vitro models to study these effects have been 
developed. These can involve irradiation using low doses 
of high or low LET radiation using microbeams or low 
fluences of alpha particles, where not all cells in the field 
are hit by a radiation traversal. Effects are looked for in 
“un-hit” cells35-40. A simple medium transfer protocol, 
which enables low dose, low LET radiation effects to be 
studied, has also been published by our own group41-42. 
This work has shown that medium from irradiated cells 
and from the distant progeny of irradiated cells contains a 
factor or factors, which can significantly alter survival of 
cells that were never irradiated and were never in contact 
with irradiated cells. Inhibitors of the production of the 
factor (or response to it) include the MAO inhibitor L-
deprenyl and lactate15, 43. A major feature of current 
research in the field is aimed at dissecting out the relative 
importance of signal production and cellular response. 
Results to date suggest that these are independently 
modulated and that cell lines, which do not produce a 
signal, may respond to one. This clearly implicates a 
genetic component in the mechanism which is further 
indicated by the in vivo work available44, 45.  
 

V. BYSTANDER EFFECTS AND GENOMIC 
INSTABILITY 

 
One of the most interesting areas in this field is the 

link between bystander effects and the induction and 
perpetuation of genomic instability1-4. Radiation-induced 
genomic instability is characterized by the appearance, in 
cell populations, of progeny with higher than normal 
levels of NON-CLONAL cytogenetic abnormalities and 
cell death. The instability is persistent, but effects occur at 
a stable rate in the post-irradiation survivors for many 
generations. Affected progeny populations do not either 
die out or dominate – an apparent paradox, which is 
difficult to reconcile with the current “world view” of 
competitive natural selection of favourable genes. The 
mechanism of perpetuation is now thought to be 
epigenetic and to involve an excess generation of reactive 

oxygen species (ROS). This is “signaled” to neighbours 
and perpetuated in progeny via mechanisms similar to the 
bystander mechanisms discussed earlier. The 
transmissible factors are very likely to be related to 
“bystander factors”. 

While knowledge about radiation-induced genomic 
instability and bystander effects has been growing in the 
radiation field for over 15 years, it has only recently 
become apparent that chemicals in the natural 
environment can also induce the state of genomic 
instability in cells and hence low dose chemical toxicity 
probably also involves bystander effects46-47. This widens 
the relevance of these indirect damage mechanisms to 
include environmental toxins other than radiation and 
makes it important to understand the mechanisms 
involved as they may contribute to mixed exposure 
responses in biota.  
 
VI. RELEVANCE OF BYSTANDER EFFECTS IN THE 

ADAPTIVE RESPONSE FIELD 
 

Evidence, which suggests that bystander mechanisms 
may be involved in adaptive responses, comes from 
published data and also from deductive reasoning. The 
published data show that signals produced by irradiated 
cells can induce protection against a real dose of ionizing 
radiation48, 49. These authors have also shown that 
intracellular calcium fluxes precede the induction of 
responses in bystander cells exposed to signals from 
irradiated cells24, 50-52. While the response that generally 
follows exposure to these bystander signals is cell death, 
this can be protective if it eliminates damaged cells from 
the population. Following low dose exposure, where few 
cells will have damage, it seems appropriate to remove 
them. At higher doses, where many cells are damaged and 
tissue integrity is at risk of collapse, such a bystander 
effect would be an added problem for an already 
compromised population. It is interesting to note here that 
repair deficient cells have larger death-inducing bystander 
effects than the corresponding repair proficient parent 
lines53, 54. This would be expected if the damaged cell 
couldn’t be repaired, if the bystander effect is assumed to 
be protective. Many cell lines and most tumour explants 
do not produce death-inducing signals after exposure to 
radiation, and no calcium pulse is seen55-57. It is not 
known whether they produce no signals or whether 
different signals, not transduced through the calcium 
pulse-apoptotic death pathway, are involved. 
 

VII. MODELS AND RELEVANCE TO RADIATION 
PROTECTION 

 
If we accept that bystander effects are the result of a 

generalized stress response in tissues or cells, what are the 
implications for radiation protection? Does the effect alter 
the acceptability of the Linear-No-Threshold hypothesis, 



 

upon which all radiation protection legislation is based? 
How can dose be used as a measure of effect or harm, if 
low doses (which are those experienced in the workplace) 
do not produce any type of linear dose-effect curve? 
There is clearly some very complex biology involved 
because the signals may be produced by all exposed cells, 
but the response appears to require a quorum in order to 
be expressed18, 58-60. The major response involving low 
LET radiation exposure discussed in the existing literature 
is a death response. This has many characteristics of 
apoptosis, but is p53 independent? While a death response 
might appear to be adverse, the position is argued in this 
paper that it is in fact protective and removes damaged 
cells from the population. Since many cell populations 
carry damaged cells without being exposed to radiation, 
so called “background damage”, it is possible that low 
dose exposures cause removal of cells damaged by agents 
other than the test dose of radiation. This mechanism 
could lead to the production of U-shaped dose response 
curves so common in toxicology61-63. In this scenario, the 
level of “adaptive” or beneficial response will be related 
to the level of background damage carried by the cell 
population. These considerations may be important when 
attempting to predict the consequences of mixed 
exposures involving radiation and other environmental 
stressors.  
 

VIII. CONCLUSION 
 

To conclude, it is clear that adaptive responses, 
bystander effects and genomic instability belong to a suite 
of effects that predominately modulate the low dose 
response to radiation. These mechanisms are part of the 
cellular homeostatic response and, while we can detect 
low dose effects, there is little evidence that these translate 
into harm. It is likely that for many genotypes there is an 
operational threshold for harmful radiation damage that 
probably occurs at a point where the functional activity of 
the tissue is being compromised by the level of 
(protective) cell death. For genotypes where the bystander 
response, if there is one, does not involve coordinated cell 
death, it is likely that there is no operational threshold and 
that stochastic effects such as carcinogenesis have some 
very small probability of occurring at low doses. What 
this probability is, though, is not easy to determine. It is 
unlikely to be definable by extrapolation from high dose 
data because the underlying mechanisms are so different. 
Many of the current research efforts in this field are aimed 
at modulating the bystander effect using chemicals. This 
approach should, perhaps, not only look at preventing the 
bystander effect but also at causing or simulating it in 
tissues and cells which do not have the capacity to mount 
this response. 
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