FUSION-DRIVEN TRANSMUTATION OF SELECTED LONG-LIVED FISSION PRODUCTS

A. TAKIBAYEV, M. SAITO, V. ARTISYUK[†], H. SAGARA

Tokyo Institute of Technology Research Laboratory for Nuclear Reactors †Obninsk State Technical University for Power Engineering

INES-1 2004 10/31-11/04

SPENT FUEL COMPOSITION

MASS OUTPUT NORMALIZED PER 1GWTYR OF FISSION ENERGY

Total Spent Fuel Composition

Stable+>5×10 ⁹ Yr	$<5 \times 10^9$ Yr
(270kg)	(Збкд)

Footnote: PWR 33GWtd·THM⁻¹ burnup and 3Yr cooling spent fuel

Footnote: -----

Footnote: PWR 33GWtd·THM⁻¹ burnup and 3Yr cooling spent fuel

LLFP NUCLEAR REACTION DATA

Nuclide	Capture Thermal Point [barn]	Resonance Integral [barn]	(n,2n) Threshold [MeV]	(n,3n) Threshold [MeV]
⁷⁹ Se	50	61	7.1	18
¹²⁶ Sn	0.090	0.15	8.3	14
⁹⁹ Tc	20	310	9.1	16
⁹³ Zr	2.2	18	6.8	16
¹³⁵ Cs	8.7	63	8.9	16
⁹⁸ Tc	N/A	N/A	N/A	N/A
¹⁰⁷ Pd	2.0	110	6.6	16
¹²⁹ I	27	29	8.9	16
¹⁴⁶ Sm	N/A	N/A	N/A	N/A

Footnote: Taken from JENDL3.2 nuclear data library

LLFP TRANSMUTATION IN THERMAL REACTOR

LLFP TRANSMUTATION IN FAST REACTOR

FUSION NEUTRON SOURCE

Neutron Availability → Flux is mostly governed by FWL value

Neutron Quality — Great FLEXIBILITY to create neutron spectrum desired

THERMAL FLUX BLANKET BASIC CONCEPT

Plasma	FW Multiplier [SiC] [Lead+ ⁶ Li] 2cm 25cm	Transmutation Zone [Graphite+LLFP] 50cm	Shielding
--------	--	---	-----------

SPECTRA OVER TRANSMUTATION ZONE

Footnote: -----

LLFP TRANSMUTATION IN FUSION FACILITY

LLFP TRANSMUTATION EFFICIENCY

Facility	⁹³ Zr		¹²⁶ Sn	
	Effective Halflife [Yr]	Equilibrium Mass [kg•GWt ⁻¹]	Effective Halflife [Yr]	Equilibrium Mass [kg•GWt ⁻¹]
Thermal Reactor	210	2000	4700	1600
Fast Reactor	260	1400	3000	1700
DT Fusion	51	470	1900	670
DD Fusion	3.3	30	100	34

CONCLUSION

LLFP transmutation by means of fission facilities is not efficient enough to drastically reduce the burden associated with LLFP

Given its neutron environment FNS is appearing to be the candidate No.1 for LLFP transmutation

In the study presented the potential of thermal flux blanket of FNS has been analyzed on ⁹³Zr and ¹²⁶Sn the most difficult LLFP to transmute