

energie atomique - energies alternatives

Cogeneration with District Heating and Cooling

CEA

Nuclear Energy Division

Scientific Direction

Energy and Heat

atomique • energies alternative

Heat has always been an issue for mankind

In 2008, the total world energy production amounted to **12000 Mtoe**

Approximately one third of it (4000 Mtoe) was used as **heat.** 50% of this heat was for residential homes, commercial businesses and public services (hospitals, schools, universities, offices)

Total space heating and cooling demand ~ 20000 TWh World District Heating and Cooling ~ 2500 TWh

The potential of DHC increase is very large

District Heating

District Heating is developed in northern European countries

District Heating

The Development of the District Heating Systems in Stockholm County - Networks of Heating

Source: D. Magnusson, Linköping University, Sweden

District Heating networks are expanding

enera

District Heating in large cities

District Cooling

City of Barcelona, Spain

District Cooling networks in warm areas

Recovery of Nuclear Heat

energie atomique - energies alternatives

Exergy

œ

energie atomique · energies alternative

Ambient temperature heat is of no use

> The **Exergy** concept allows to also valuate the temperature at which the heat is produced.

$$\mathbf{E} = \mathbf{H} - \mathbf{T}_0 \mathbf{.S}$$

Exergy of a quantity of heat Q \implies E = Q.(1 - $\frac{T_0}{T}$) at a temperature T

	Case of 1300 MWe Nuclear Power Plant								
T hot	T cold	Wp	Qi	W _{HP}	W _{BP}	W gross	Qs	η carnot	η
(°C)	(°C)	(MW)	(MW)	(MW)	(MW)	(MWe)	(MW)	(%)	(%)
288	39	9	3 920	-417	-936	1 353	-2 562	44.4%	34.3%

Exergy: Electrical Efficiency

energie atomique • energies alternatives

$$\eta = \frac{\left| W_{HP} + W_{BP} \right| - W_{P}}{Q_{i}}$$

> W_{BP} on the Low Pressure Turbine decreases with increasing temperature

$$\mathbf{Q}_{\mathrm{out}} \approx \mathbf{Q}_{\mathrm{i}} - |\mathbf{W}_{\mathrm{HP}} + \mathbf{W}_{\mathrm{BP}}|$$

$$\mathbf{E}_{\text{out}} = \mathbf{Q}_{\text{out}} \cdot (1 - \frac{\mathbf{T}_0}{\mathbf{T}})$$

> The output exergy increases with increasing temperature

Exergy: Electrical Efficiency

Trade-off between electric output and Exergy

Thermodynamics: The Rankine cycle

Thermodynamics: The secondary circuit

Main Transport Line

energ

Example of Substations

Prefabricated substations

- The main benefits of prefabricated substations
 - Realiable installation at factory
 - Standardized system solutions
 - Small space requirement
 - Site installation time can be minimized
 - Easy to maintain

energie a

- High degree of automation
- Easy operation

<u>Source:</u> Janne Lavanti, PÖYRY, Finland Oy Energy, May 2011

S PŐYRY

H. Safa

The Main Transport Line

œ

energie atomique • energies alternatives

In a Tunnel

Copenhagen District Heating Bore Tunnel, 2010

(may be used as a common utility)

In a Trench

The Main Transport Line: Thermal Losses

- $\Box \quad \text{Diameter } \Phi$
- Insulator thickness e
- **Insulator conductivity** $\lambda < 0.04$ W/m.K

$$\left(\frac{\mathrm{d}Q}{\mathrm{d}z}\right) = \frac{2\pi\lambda}{\mathrm{Ln}\left(1 + \frac{2\mathrm{e}}{\Phi}\right)} \quad (\mathrm{T} - \mathrm{T}_{0}) \quad < 120 \text{ W/m}$$

Total heat loss ~ 2% of the transported power!

The Main Transport Line: Hydraulics

Loviisa 3 Nuclear Power Plant Project in Finland

PWR connection

eneraie atomiau

Heat extraction from a Pressurized Water Reactor

<u>Source:</u> Harri Tuomisto, FORTUM, Finland , October 2010

Loviisa 3 Nuclear Power Plant Project in Finland

Loviisa 3 CHP – heat transport on a long distance

Heat transport in pipes

- Mounting in a rock tunnel, cross section 30 m²
 - stable conditions
 - · positive maintenance aspects
- Near surface installation
 - lower costs
 - · environmentally more challenging

District heat transport system

- Distance over 75 km (Loviisa eastern Helsinki)
 - 2 x Ø 1200 mm pipes, PN25 bar, Q = 4 5 m³/s
 - 4 7 pumping stations
 - total pumping power needed tens of MWs
 - compensates for heat losses
 - Control scheme
 - · district heat water temperature or flow rate
 - Heat accumulator needed, heat distribution to the local district heat network via heat exchangers

Source: Harri Tuomisto, FORTUM, Finland , October 2010

The Main Transport Line : Pumping Power

Install pumping stations every ~ 20 km

The Nogent-sur-Seine Power Plant

Two 1300 MWe reactors with cooling towers

œ

The Main Transport Line: An example

Nogent-sur-Seine Nuclear Power Plant

energie atomique • energies alternative

Main Heat Transport Line

Economics

ced

energie atomique - energies alternative

Two main parameters

1. The Temperature T of the fluid

Electric Efficiency, Heat Losses

2. The Piping Size Φ Pumping Power

Assumptions:

- ➤ Operation time: 1/3 cogeneration, 2/3 electric
- > Value of 1 MW thermal = 50% of 1 MW electric
- ➤ 2 lines of 1500 MW capacity each

Economics: Optimal Temperature

H. Safa

Economics : Optimal Piping Size

Main primary line parameters

(e)

energie atomique - energies alternatives

Main Transport Line Characteristics							
Transported heat power	1 523	MW					
Total line length	150	km					
Forward Temperature	120	°C					
Return Temperature	60	°C					
Insulation Thermal Conductivity	0.05	W/m.K					
Insulation thickness	300	mm					
Piping size	2 000	mm					
Max. pressure	20	bars					
Water flow	6.34	m ³ /s					
Total heat loss	32.3	MW					
Hydraulic pressure drop	-0.16	bar/km					
Total pumping power	43	MW					
Cost of delivered MWh	29.8	} €/MWh					

Single line should be doubled to get a capacity of 3000 MWth

Economics: Balance

energie atomique • energies alternatives

Implementation on Nogent-sur-Seine reactor (1300 MWe) 150 km long main heat transport line

➤ Additional heat production of 9 TWh Gain of +540 M€/year

➤ Reduction of electric production -1.8 TWhe Loss of -180 M€/year

Total gain of +360 M€/year

CO_2 emissions

energie atomique • energies alternative

 \simeq CO₂ emissions from district heating in Paris

60% fossil fuels (gas boilers, coal, oil) 40% waste incineration

Average of 195 gCO_2/kWh

Large reduction in CO_2 emissions

Avoid 1.7 Million tons of CO_2 /year

Conclusions

The recovery of nuclear heat from present NPP is technically feasible

The primary heat transport line can be designed with low thermal losses (a few percents) even for long distances (> 100 km)

> Heat recovery enhances the plant efficiency and provides a high energetic gain (+70%)

> The recovered heat is economically competitive

Nuclear heat recovery allows large reduction in CO₂ emissions

The Sustainable Nuclear Energy Technology Platform

The NC2I Task Force

Mission:

NC2I TF shall comply with the SNETP mandate and shall launch a Nuclear Cogeneration Industrial Initiative (NC2I) and any other tools required for successful prototype project in the 2020 time frame

Vision:

The NC2I vision is to unlock and use the potential of nuclear cogeneration for considerable savings of fossil resources in the short to medium term

NC2I shall thus develop, demonstrate and stimulate nuclear cogeneration systems compatible with large-scale industry applications and SET Plan targets

→ Support cogeneration applications for all nuclear systems

- → Extend cogeneration potential by accelerated HTR development
- → Initiate prototype project(s)
- Possibly prepare/participate in international industrial initiative(s)

<u>Source:</u> Sander De Groot, NRG, SNETP/NC2I, October 2011