

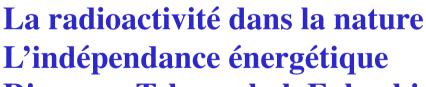
Le nucléaire : l'énergie du futur

Présentation à Houilles

par Bruno Comby

Directeur de l'institut Bruno Comby (IBC)
Fondateur et président de l'AEPN
(Association des Ecologistes
Pour le Nucléaire)

Introduction: Le parcours d'un écologiste


Le changement climatique Informations sur l'énergie Que faire ?

Le nucléaire : une énergie propre

L'énergie nucléaire

Risques: Tchernobyl, Fukushima...

L'avenir de l'énergie

France décarbonée : mode d'emploi 80-100 GW

AEPN: Assoc des écologistes pour le nucléaire

Conclusion : C'est l'énergie du futur !

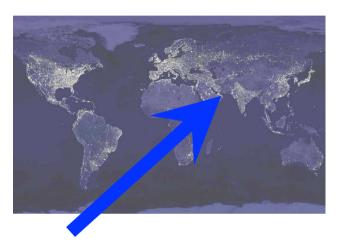
L'ancienne et la nouvelle vision de l'écologie : Les bienfaits de l'énergie nucléaire pour l'environnement

Le parcours d'un écologiste

La vie d'un scientifique indépendant

Diplômé de l'Ecole Polytechnique et ingénieur en génie nucléaire de l'Ecole Nationale Supérieure de Techniques Avancées

Maison écologique à Houilles :

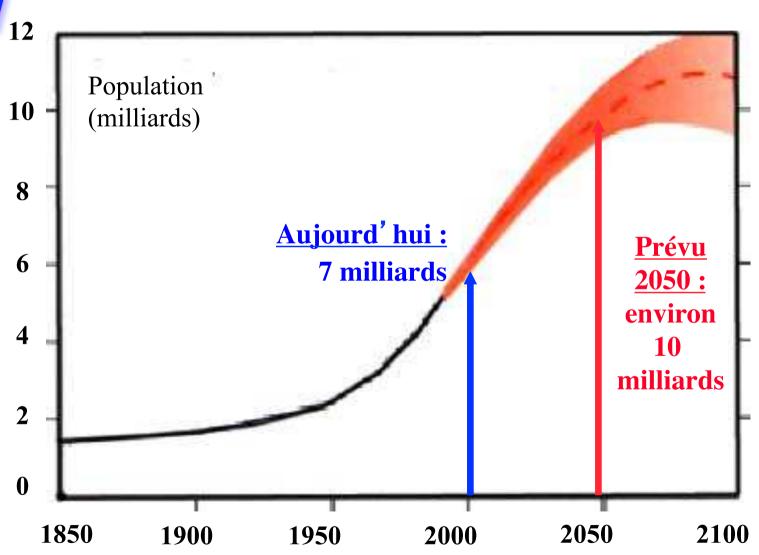

- Passive et positive en énergie
- >100 fois moins de CO2

Le service militaire d'un pacifiste

Zone de guerre en 1981 : Golfe Persique Détroit d' Hormuz

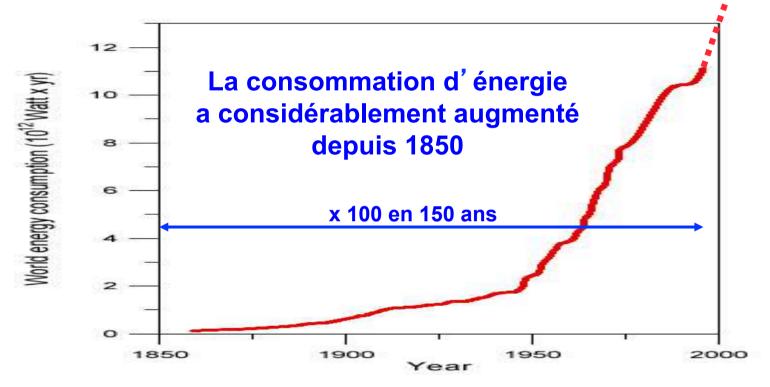
Problème:

Garantir la sécurité des super-tankers pétroliers


La planète Terre vue la nuit

Actuellement 20% de la population mondiale consomme 60% de l'énergie

Planète Terre vue la nuit depuis l'espace (image reconstruite) - © Nasa 2000

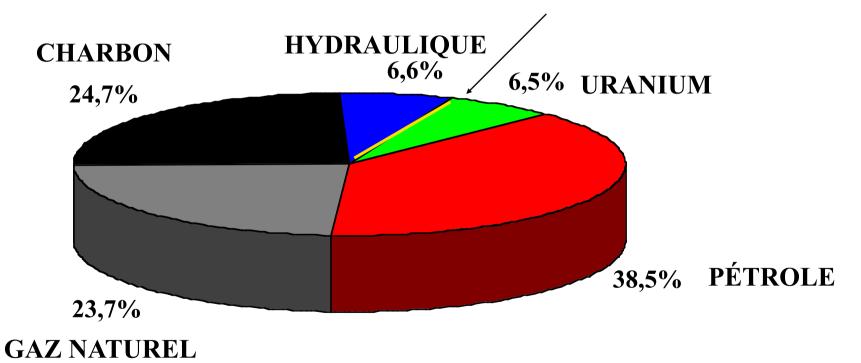


Population mondiale

Consommation d'énergie

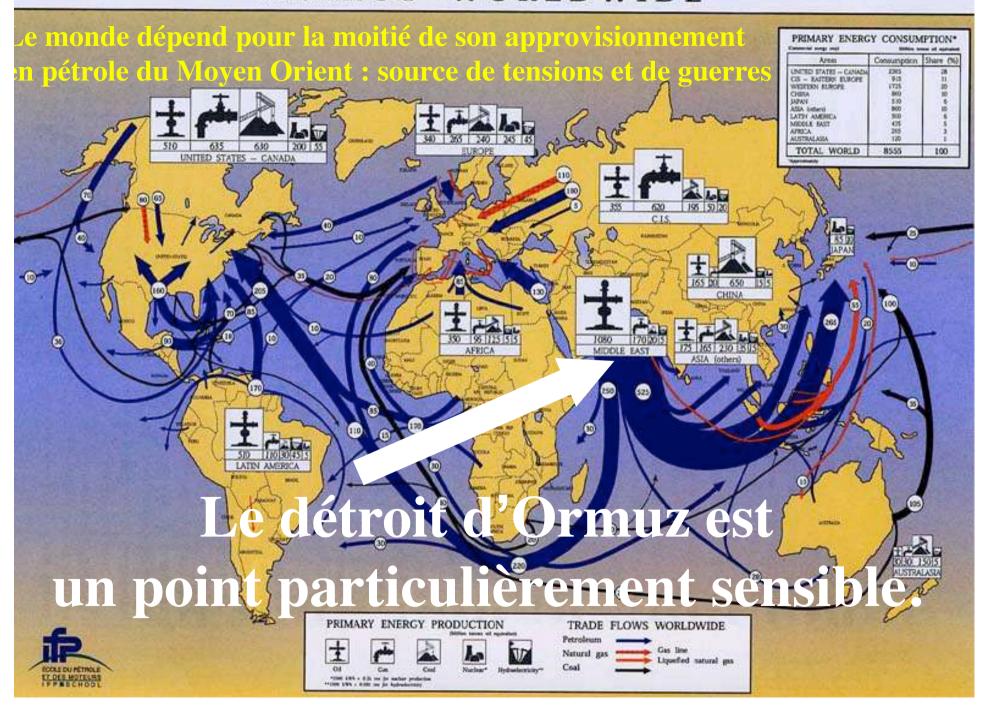
Actuellement, la consommation d'énergie augmente rapidement dans les pays en développement et n'augmente plus dans les pays développés.

Prévision



SOURCES D'ÉNERGIES

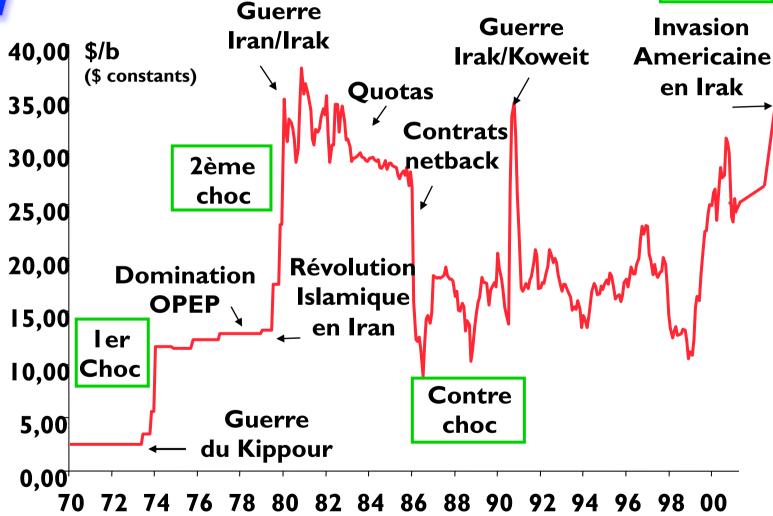
hors biomasse et bois (MONDE 2002)


87% de l'énergie est carbonée (charbon, pétrole, gaz) et contribue à l'effet de serre

Solaire + éolien + géothermie = 1%

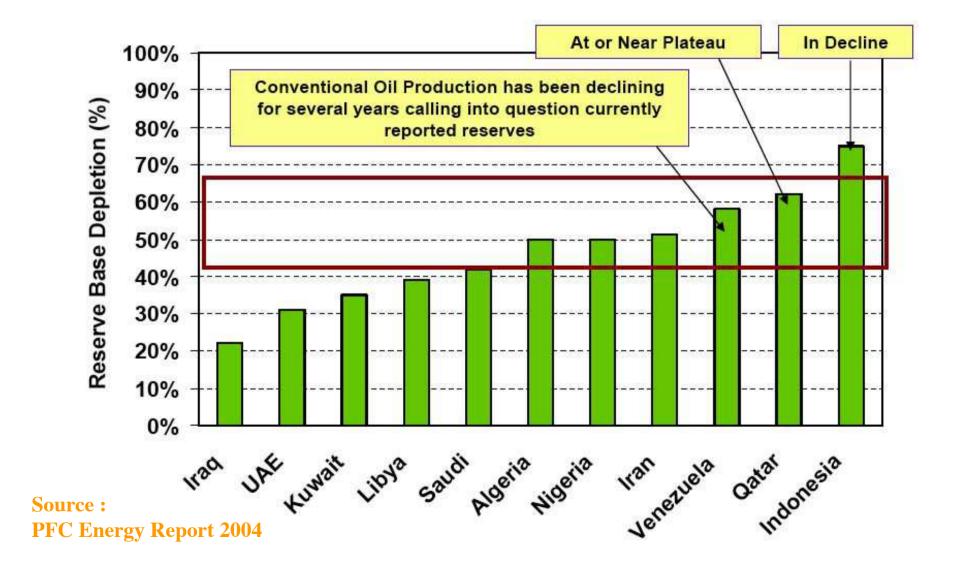
9,1 Gtep/an + biomasse ~> 10 Gtep/an Source : BP 2002

ENERGY WORLDWIDE

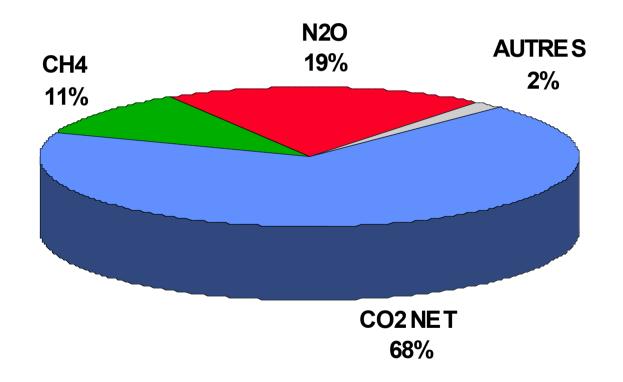


Prix du pétrole brut

60


\$/b

Source: Platt's / IFP



LE PIC PETROLIER: LA FIN DU PETROLE PAS CHER

CONTRIBUTION AU PRG*

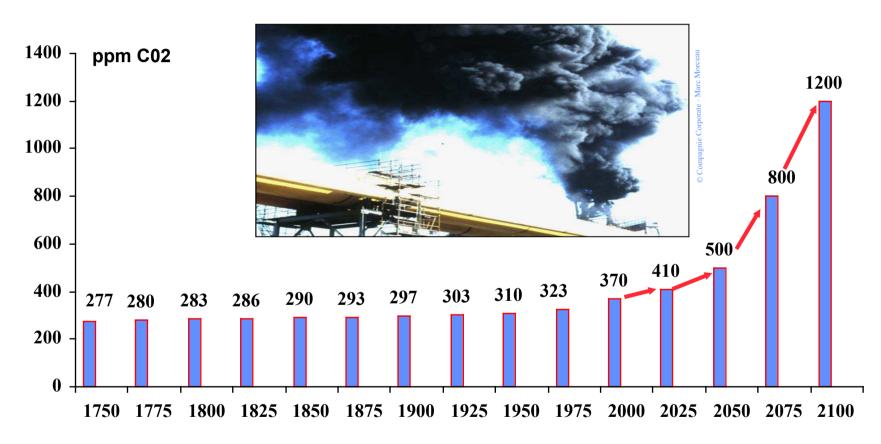
* Pouvoir de Réchauffement Global = part dans l'accroissement de l'effet de serre Ref: GIEC 1995-X Environnement Chiffres pour la France

Le CO2 est un gaz à effet de serre

20ème siècle: +0.5 à 1°C

21ème siècle: +3 à 6° C

Imaginons...: que nous arrêtions soudain d'émettre des gaz à effet de serre, le réchauffement climatique va-t-il cesser ?

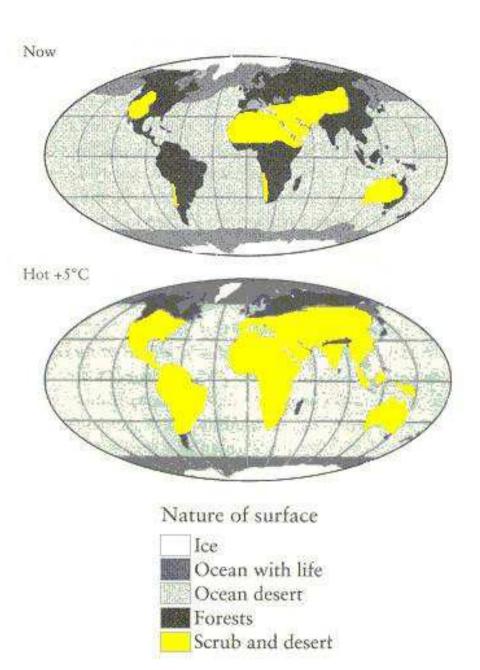

UN EFFET DEJA GLOBAL

avec une longue constante de temps :

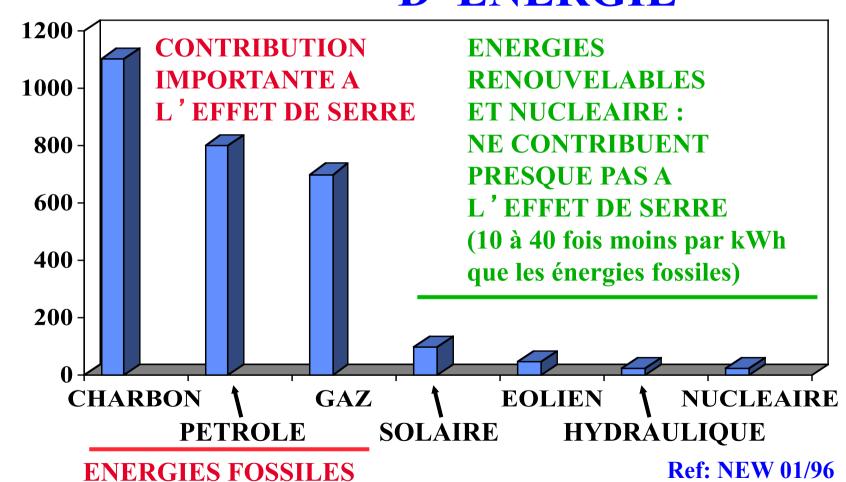
IL EST URGENT D'AGIR

Taux de CO2 dans l'atmosphère

Le taux de CO2 dans notre atmosphère n'a jamais été aussi élevé depuis plus de 400 000 ans, et il continue à croître.



1979 SSMI Composite Data


2003 SSMI Composite Data

PRODUCTION DE GAZAEFFET DE SERRE SELON LE TYPE D'ENERGIE

gr CO2/kWh

QUE FAIRE?

- 1 ECONOMIES D'ÉNERGIES
- 2 EFFICACITE ENERGETIQUE
- 3 ENERGIES PROPRES

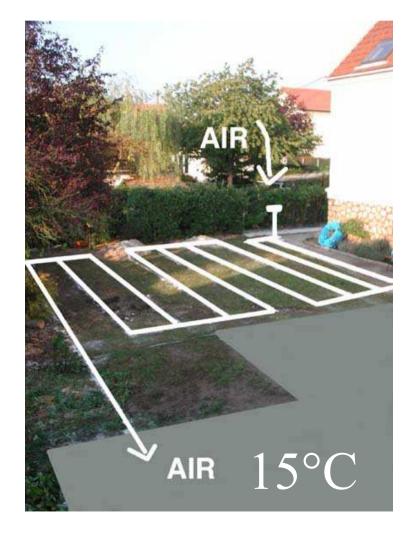
Objectif (nécessaire et réaliste), diviser :

- les gaz à effet de serre par 4 en Europe

Habitat - industrie - transport agroalimentaire - électricité

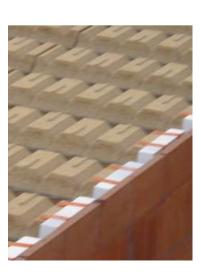
Un exemple concret: la construction écologique

- 20 fois moins d'énergie
- 400 fois moins de CO2


Par rapport à une maison ordinaire chauffée au gaz

Puits canadien Géothermie

Techniques de construction:


- Matériaux isolation renforcée « passive »
- Conception bioclimatique
- Ventilation double-flux + puits canadien
- Pompe à chaleur et ECS géothermique
- Production d'énergie « positive »
- Récupération 80% chaleur eau chaude / douches

Il faut changer la RE 2020!

http://maison.ecolo.org

Sur les chantiers BTP, dans les mines, l'agriculture, l'industrie:

- stop au gaz, charbon, pétrole
- améliorer les méthodes (- engrais, - phyto, + économies, + échangeurs)
- tout électrifier (propre)

Voitures électriques camions, trains, bus, bateaux : l'électricité c'est propre!

Transports propres

Amélioration des performances des batteries

De + en + de capacité (kWh):

Pb: 50 km (années 90) Ni-Cd: 80 km (2000)

NiMH: 100 km (2005)

Lithium 2013 : 130 km (Zoé 22 kWh)

Lithium 2017: 240 km (Zoé 41 kWh)

Lithium 2019 : 300 km (Zoé 52 kWh)

Kia Hyundai 2018 : 450 km (64 kWh)

Tesla M3: 560 km (77 kWh) et MS 800 km.

Moteur de + en + efficace :

20 -> 15 kWh/100 km en 5 ans

Électricité 2-3€/100km vs essence 10-12€/100km (x 4 à 5)

Recharge de + en + rapide :

 $43 \text{ kW} (2013) \rightarrow 75\text{-}150 \text{ kW} (2020)$

En 2022-2025 : 1000 km, 350 kW

100km/4min, 1,9 s le 0/100km/h 1 million miles battery

2022

Trajet Houilles-Larzac

700 km en VT 7h roulage 1h30 pause Total: 8h30

2017

Nouvelle batterie

2018

Nouvelle voiture

2018

2020

charge

Zoé 22 kWh

Zoé 41 kWh

Kona 64 kWh

Nouveau Kona 64 kWh réseau de

Range: 130 km

Range: 240 km

Range: 450 km

Range: 450 km

Charge Sodetrel

Charge Sodetrel

Charge Sodetrel

Charge Ionity

Durée du trajet : 23 h Départ 7h -> Arrivée 06h Durée du trajet : 17 h Départ 7h -> Arrivée 24h

Durée du trajet : 9 h 30 Départ 7h -> Arrivée 16h30

Durée du trajet : 8h30 Départ 7h -> Arrivée 15h30

Charge 1h30 pour 80 km

Charge 2h pour 150 km

Charge 1h pour 175 km

Charge 45 mn pour 175 km

Temps de roulage : 7h Temps de charge: 8x1h30 Bornes HS, imprévus: 4h

Temps de roulage : 7h Temps de charge : 4x2h Bornes HS, imprévus : 2h

Temps de roulage : 7h Temps de charge : 2 x1h Bornes HS, imprévus: 0,5h Temps de roulage: 7h Temps de charge : 2x 45 mn Bornes HS, imprévus : OK

Charge théorique : 43 kW Charge max: 37 kW Charge movenne: 15 kW

Charge théorique : 43 kW Charge max: 37 kW Charge moyenne: 25 kW

Charge théorique : 50 kW Charge max: 44 kW Charge movenne: 35 kW

Charge théorique : 100 kW Charge max: 77 kW Charge movenne: 50 kW

Prix: le paradoxe

Acheter plus cher... pour faire des économies

KONA ESSENCE

Longévité: 300 000 km (4 voit/p)

Prix d'achat: 25 000 €

Entretien : 15 000 €

Essence : 30 000 €

Coût total : 70 000 €

Coût par km: 24 cts/km

ELECTRIQUE

Longévité : 1 000 000 km (1 voit/p)

Prix d'achat: 35 000 €

Entretien : 12 000 €

Electricité : 27 000 €

Coût total : 74 000 €

Coût par km: 8 cts/km

Combien de réacteurs nucléaires pour électrifier les VL, VU et PL?

1 VE x 15 000 km/an x 20 kWh/100 km = 3 MWh/an 1 EPR x 1650 MW x 8000 h/an = 13 200 000 MWh/an

Donc: 1 EPR = 4.4 millions de VE

33 M de VP = 8 EPR

= 3 EPR

6,2 M de VU (x 2,5 VP) 630 000 PL (x 7 VP) = 1 EPR

Il faut 12 EPR = 19,2 GW pour décarboner la mobilité

Combien de réacteurs nucléaires pour électrifier chauffage et ECS ?

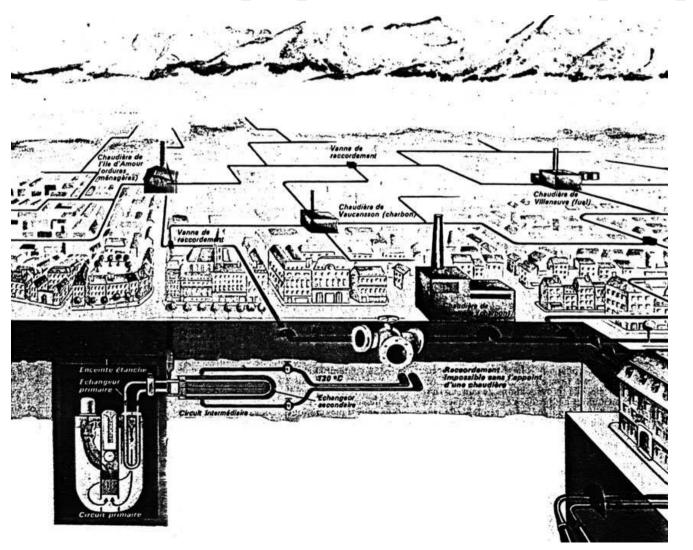
Consommation élect. chauff + ECS par logement : 3 MWh/an 1 EPR x 1650 MW x 8000 h/an = 13 200 000 MWh/an

Donc: 1 EPR = 4,4 millions
de logements isolés
et électrifiés

Chauffage de 36,3 M logements :

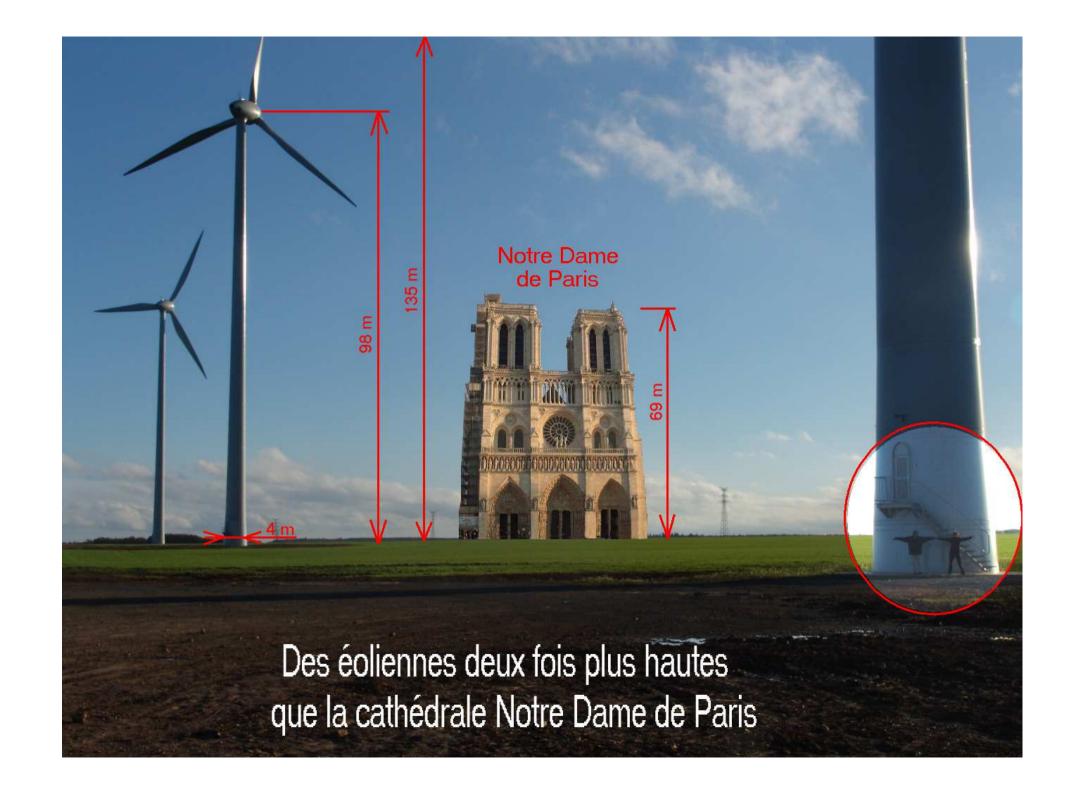
47% élec 23% gaz 16% fioul 14% bois

 $39\% \ 36,3 \ M \times 3 \ MWh = 44 \ TWh = 3 \ EPR$


+ chauffage tertiaire et industrie = 2 EPR

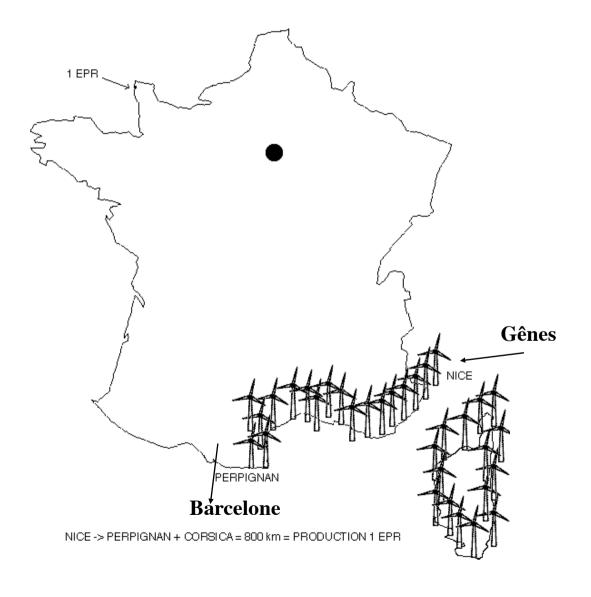
Il faut 5 EPR = 8 GW en + pour décarboner le chauffage

Cogénération nucléaire

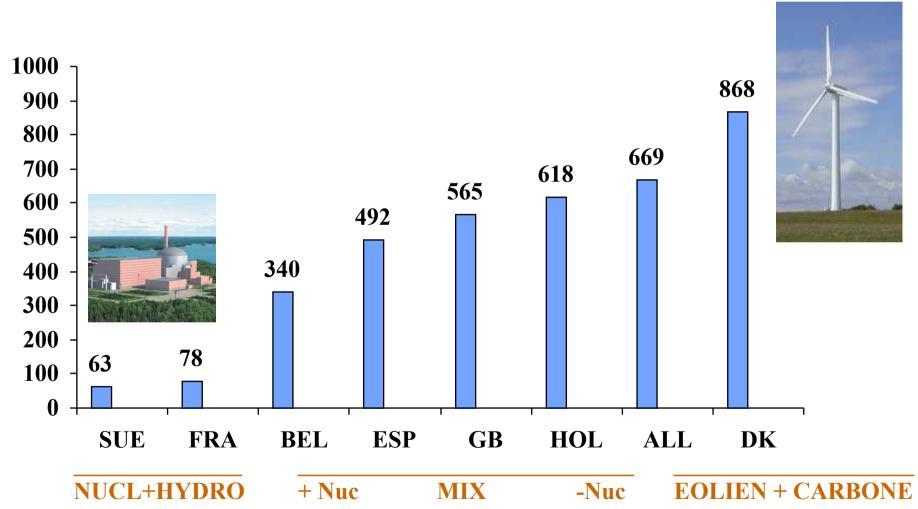

= chaleur propre (sans CO2) et (presque) gratuite

Gaspillage actuel:
1000 TWh/an
= 1 PWh/an
(en France)

Projet Thémis Stockholm Temelin Russie Nogent/Seine


NUWARD:
300 MWe
1GWth
1 Mhab

L'ENERGIE EOLIENNE NE SAUVERA PAS LA PLANETE



REJETS DE CO2 PAR PAYS

TONNES/GWh

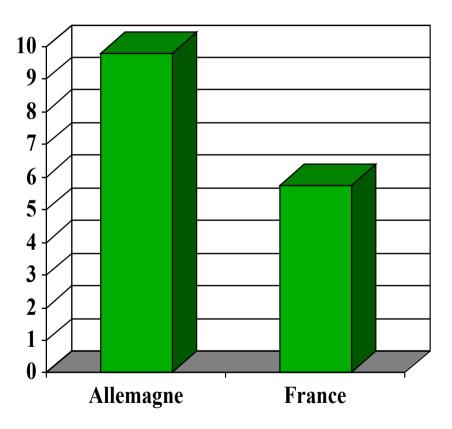
1995

L'ENERGIE SOLAIRE PEUT AIDER ... QUAND IL Y A DU SOLEIL

L'ENERGIE NUCLEAIRE CONTINUE A SE DEVELOPPER

Bonnes nouvelles de :

- Royaume-Uni
- Etats-Unis, Russie
- Chine, Inde
- Canada
- Pologne
- Emirats, Turquie, Bulgarie,
- Finlande
- ... et en France...



Allemagne?

EMISSIONS de CO2 en France et en Allemagne

(t CO2/personne par an)

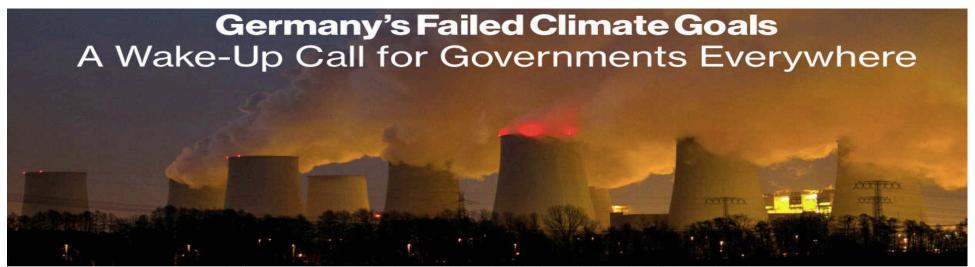
Emissions de CO2 (source IEA 2016)

DE = 8.87 Tons CO2/hab 0.19 kg CO2/2010 USD GDP

FR = 4.38 Tons CO2/hab 0.10 kg CO2/2010 USD GDP

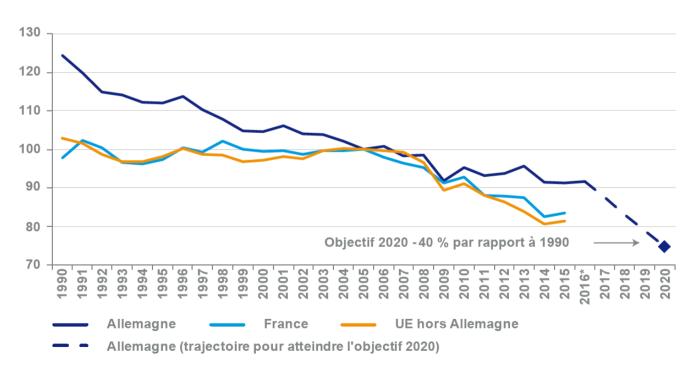
■ Tons CO2/hab

Tarif de l'électricitépour les familles :


DE = 30 cts/kWh

FR = 18 cts/kWh

L'exemple à suivre est la France, certainement pas l'Allemagne!


Source:

EUROSTAT, European Commission, 2nd trim 2018

Cooling towers at the lignite coal-fired power plant in Janschwalde, Germany. Photographer: Krisztian Bocsi/Bloomberg

Évolution comparée des émissions de gaz à effet de serre en Allemagne, en France et en Union européenne (base 100 en 2005)

Source : Eurostat et BMWi¹ pour la donnée 2016, calculs France Stratégie

Les énergies propres sont nécessaires

Le monde va manquer d'énergie Il n'y a aucune contradiction entre les économies d'énergie, l'énergie nucléaire et les énergies renouvelables. Toutes les énergies propres doivent être développées. Mais seules l'énergie nucléaire et hydraulique sont à la fois propres et disponibles à la demande

L'ENERGIE NUCLEAIRE

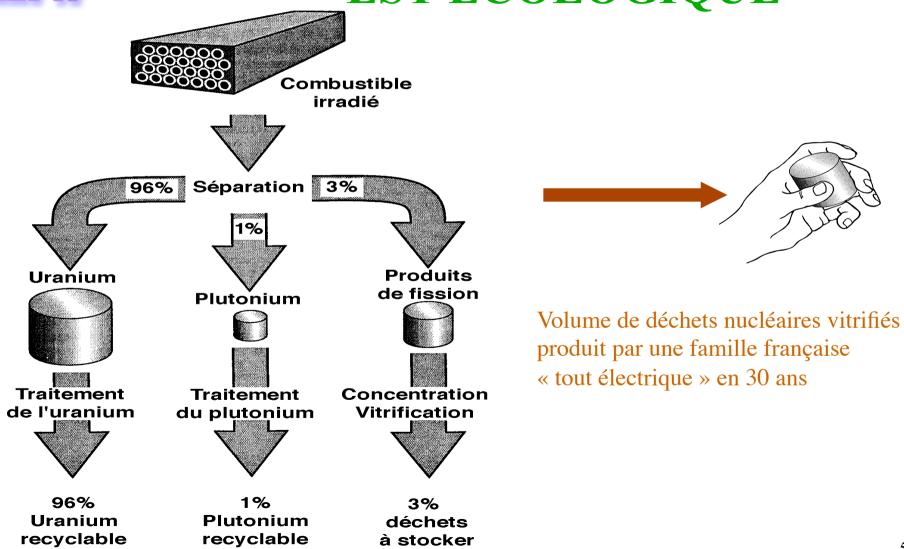
- Est très compacte
- Facteur 1 million(1g U = 1 tonne pétrole)
- Consomme très peu d'uranium (20 T=1m³ par an)
- Produit très peu de déchets

Déchets nucléaires

- Leur volume est faible

- Ils sont confinés, pas rejetés dans la nature

- Ils se décomposent spontanément


- Leur toxicité initiale décroît très vite

- Quelques mètres de terre suffisent pour arrêter les rayonnements radioactifs

- Le combustible usé peut être retraité.

LE RETRAITEMENT DES DECHETS NUCLEAIRES EST ECOLOGIQUE

La radioactivité, c'est naturel!

Partout: 0,1 μSv/heure
En avion: 5 μSv/heure
A Guarapari (Brésil):
Jusqu'à 50 μSv/hr (plage)
A Ramsar (mer Caspienne):

150 μSv/hr (maisons)

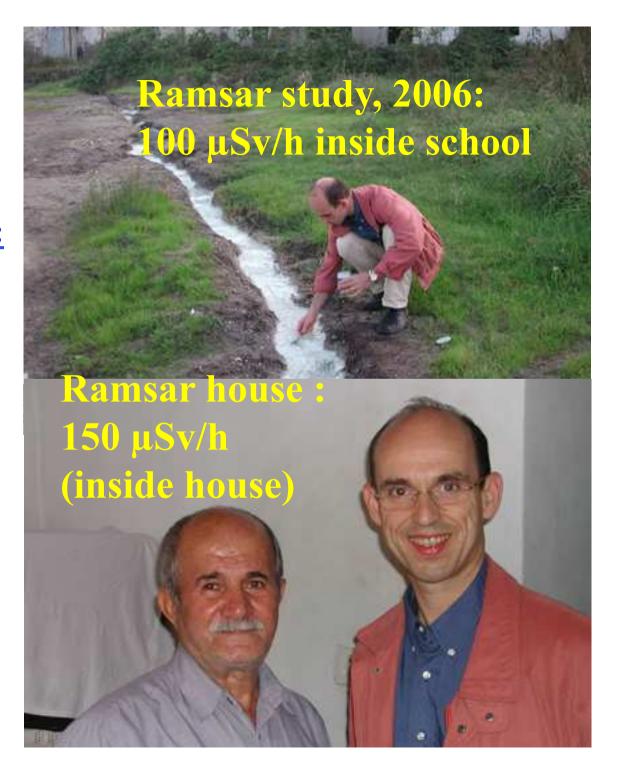
La Hague INB: 0.001 μSv/h

La Bourboule: 0,2 à 3μSv/h

U jardin: 10 kg/mètre (3 ppm)

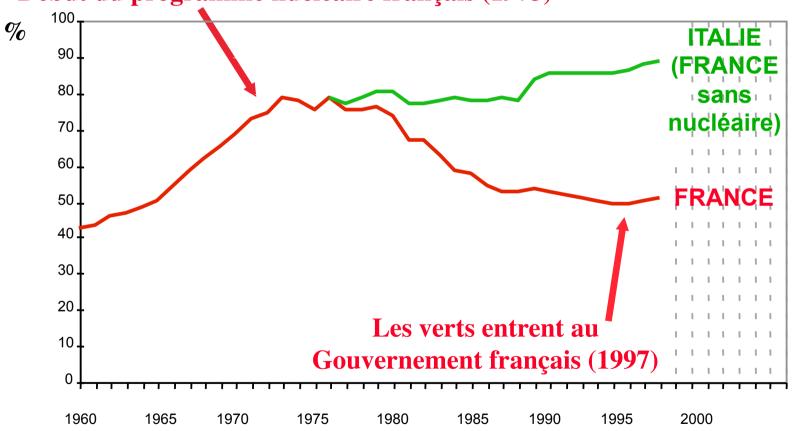
Pour protéger la population,
la radioprotection doit inclure

la radioactivité naturelle

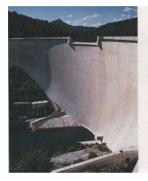

55

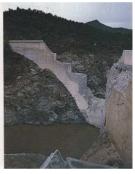
Etude HBRS RAMSAR:

The highest background radiation school in the world and the health status of its students and their offspring (Comby & al., Isotopes in Environmental and Health Studies, oct 2013)


-> No negative health effects observed

Dépendance énergétique (%)


Début du programme nucléaire français (1973)



Toute énergie comporte des risques

Malpasset - 423 morts 2 Décembre 1959 Moyenne = centaines/an

Explosion de vapeur - 1865 Mississipi -> 1547 morts

350 000 morts / accidents du travail / an -> un seul dans le nucléaire 60

L'accident De Tchernobyl

- Une catastrophe d'origine humaine, exemple à ne pas suivre avec erreurs graves à tous les niveaux :
- Réacteur de conception instable, pas d'enceinte de confinement, sécurités bypassées, test interdit...
- Tabac= 6 millions morts/an = 300 Tch/jr = 1 Tch/4 min

TMI: réacteur perdu, mais 0 décès

REP: avec enceinte, pas graphite inflammable

CHARBON: 10 000 décès/an (1 Tch/3 jr)

FUKUSHIMA

Un tsunami dépassant toutes prévisid

- 20 000 morts noyés (seulement 2 dans la centrale)
- Arrêt automatique des 6 réacteurs
- 4 réacteurs détruits, 3 cœurs fondus, 2 explosions H2
- Evacuation rapide <15 03 : population non exposée
- 4 morts parmi les employés (aucun par irradiation)
- 6 employés > dose autorisée 250 mSv (vont bien)

Leçons apprises : le nucléaire est encore plus sûr

- Révision des connaissances tsunamis (5.7m -> 14 m)
- Pompes et diesels de secours insuffisants et inondés
- STRESS-TEST : sûreté améliorée dans tous les pays

Risque d'attaque terroriste

WTC tower

Taille relative

CONCLUSION:

- Cible difficile à viser pour un gros avion (taille)
- Enceinte de confinement prévue pour résister aux chutes d'avion
- Le risque majeur n'est pas nucléaire : c'est le black-out électrique (insuffisance d'électricité)

Solution : davantage de nucléaire pour avoir des centrales en réserve

PLAN 80 GW de l'AEPN FPN -> France 100% décarbonée

Zéro CO2, c'est:

Bannir le carbone (gaz, pétrole, charbon)

Augmenter les renouvelables ne sert à rien (remplace une électricité déjà décarbonée) -> supprimer toutes les aides

L'AEPN propose en priorité :

- d'électrifier les transports
- d'électrifier le chauffage et l'ECS
- d'augmenter le parc nucléaire
- de mieux isoler les logements.

Pour une FRANCE ZERO CARBONE

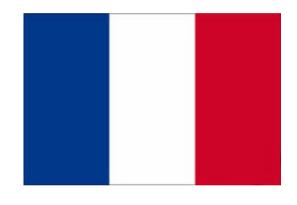
Situation actuelle : 58 réacteurs 63,2 GW (à remplacer par 38 EPR)

A quoi il faut ajouter pour décarboner :

- les transports : 12 EPR 19,2 GW

- le chauffage: 5 EPR 8,3 GW

Soit 27 GW en +, la LTECV prévoit moins de nucléaire, ce qui est contraire à l'objectif national de décarbonation


Il faut donc changer la LTECV et la PPE au plus vite et prévoir 27,5 GW en +, soit au total : 55 EPR = 91 GW

Le plan 80-100 GW de l'AEPN

Scénario bas: 80 GW (49 EPR)

Poursuite de la désindustrialisation, crise sociale accrue, augmentation du chômage, diminution PIB

Scénario haut: 100 GW (61 EPR)

Avec réindustrialisation partielle, légère croissance économique, diminution du chômage FRANCE ZERO CARBONE

PLAN 80-100 GW de l'AEPN -> LOI ET RÉGLEMENTATION

Erreur de la LTECV et PPE :

Plafond: un seul mot à changer -> plancher

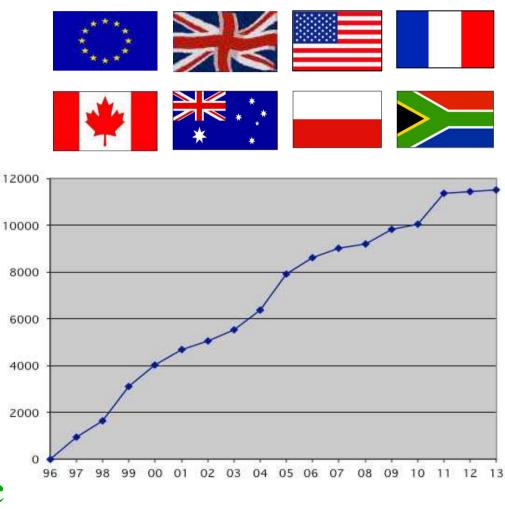
50%: un seul chiffre à changer -> 80-100 GW

(parc nucléaire renouvelé : 49 à 71 réacteurs)

Erreur de la RT 2012/2015 -> RE 2020

Une seule lettre à changer : p -> f (x2,58)

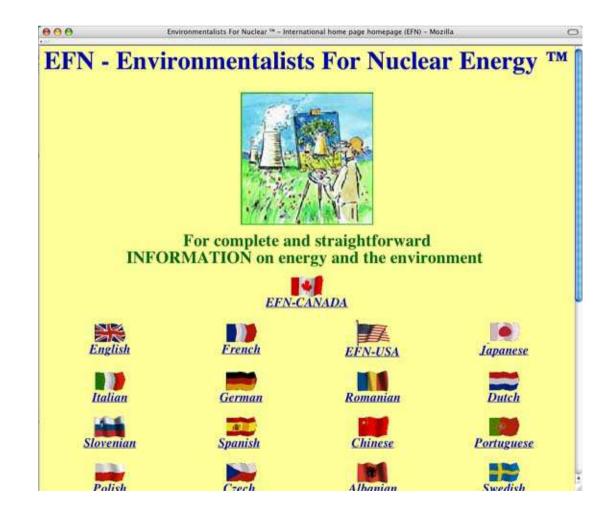
Calendrier:


10 à 20 EPR à construire <u>avant</u> renouvellement parc Rythme 2 réacteurs par an -> Date critique en 2022

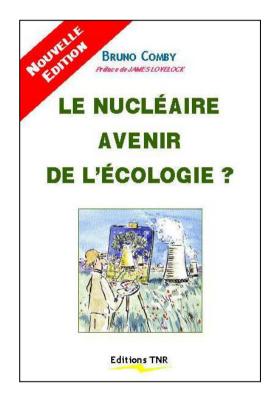
AEPN : Association des Ecologistes Pour le Nucléaire

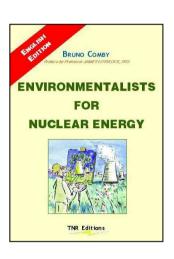
- Un réseau international de plus de 16 000 membres et signataires favorables au nucléaire propre et respectueux de l'environnement
- En croissance rapide
- Dans 65 pays
- Sur 5 continents.

Objectif de l'AEPN:
information du public
sur l'énergie et l'environnement

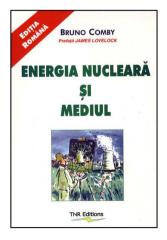

Activités de l'AEPN

Site web: www.ecolo.org


Centrale nucléaire de Civaux

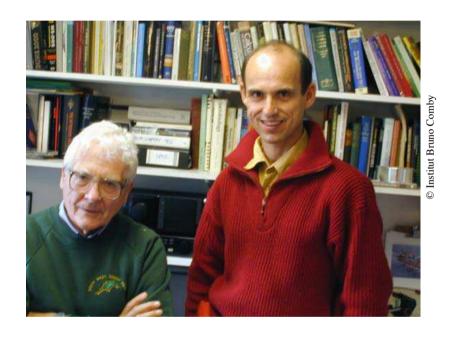


Le nucléaire, avenir de l'écologie


Traduit et publié en 10 langues



Préface du Pr. James Lovelock et de Patrick Moore

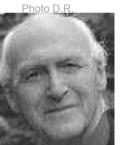


www.comby.org

-> cliquer sur « livres »

Pr. James Lovelock

- Fondateur historique de la pensée écologique depuis les années 1960
- auteur de la théorie de Gaia
- membre de l'AEPN


« L'énergie nucléaire est la seule solution écologique »

Quelques autres écologistes pour le nucléaire

Patrick MOORE, EFN-Canada

Fondateur et ancien directeur de Greenpeace international durant 7 ans, fondateur et ancien Président de Greenpeace-Canada durant 9 ans

Ancien membre du Bureau de Friends of the Earth UK

Survivants d' Hiroshima

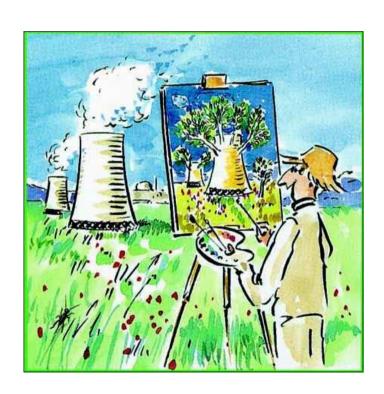
Gul GOKTEPE

Black Sea Medal (distinction environnementale des Nations Unies)

Nous n'avons qu'une planète

© Luc Massart/ IBC

Une planète habitable


pour nos enfants

... et pour les générations Futures ...

Plus d'information: www.ecolo.org www.comby.org

Contact: bruno.comby(@)polytechnique.org

© COPYRIGHT - droits réservés