Energy Alternatives for Sustainable Prosperity

Alistair I. Miller Researcher Emeritus Office of the Principal Scientist

Symposium on Greenhouse Gas Control Technologies and Climate Change 57th Chemical Engineering Conference Edmonton. AB 2007 October 31

Focus of Presentation: Making Hydrogen Using Nuclear

- Reminder of why we need hydrogen (H₂) as a fuel
 - Water electrolysis is a low CO₂ emitter if electricity comes from a suitable source
- Look at costs of making H₂
 - By SMR, with a realistic natural gas price and CO₂ capture & storage
 - By continuous electrolysis
 - By intermittent electrolysis
 - Mixing in electricity from wind power
 - High-temperature thermochemical processes

Overall Perspective

- The Earth is experiencing a surging epidemic of greenhouse gas emissions
 - CO₂:
 - 280 ppm (pre-industrial)
 - 315 ppm by 1958
 - 385 ppm now
 - Rise now exceeds 2 ppm/a
 - May be already in trouble
 - Need to stabilize
 - 450 ppm would be a good target
 - 550 ppm likely to cause huge disruptions
- Need to cut emissions to about 40% of 1990 levels

Placing Canada in Global Context

Canada's Energy Distribution

	(PJ)	(TW.h)	% Total
Residential/Agricultural	1677	466	21.9
Commercial/Government	1166	324	15.2
Industrial	2701	750	35.2
Transportation	2130	591	27.8
TOTAL	7674	2132	100.0
Of which electricity	1972	548	25.7
Of which carbon-based electricity	y 385	107	5.0

Transport? – Electricity and Hydrogen

- Electricity and hydrogen both need a primary source
 - We must tackle transport (25+% of emissions): these are the choices
 - Biomass won't do the heavy lifting
 - Electricity & hydrogen both need a near-zero CO₂-emitting source
 - Electricity from a low-emitting source is very attractive
- Electricity or hydrogen? Flexibility would be useful
 - Deeply pluggable hybrids will likely take a good chunk of the light vehicle market
 - Heavier duties (trucks, ships, trains) will need hydrogen
 - For most Canadian routes, rail electrification is not cost-effective
 - Planes? Perhaps but later
 - Conservative industry with long lead times
 - Unresolved issue of adding more water vapour to the higher atmosphere

Hydrogen from Nuclear

Central Issues:

- Is it price competitive?
 - ✓ Can use intermittent production at off-peak prices
 - ✓ Fits well with nuclear replacing coal since uninterrupted nuclear is best
- Will the price be stable?
 - ✓ Yes
- Is it environmentally friendly?
 - ✓ Near-zero CO₂
 - ✓ Waste amounts are very small
 - 100 g U from a CANDU = 1 tonne methane = 3 tonnes CO₂
 - 14 mL U_3O_8 = 1500 m³ CO₂ at ambient pressure (eight orders of magnitude)
- With intermittent production, can one achieve continuity of supply?
 - Either use H₂ storage in underground caverns
 - Unusual but ICI have done on Teesside for 30 years
 - Or embed in a larger H₂ system

Cost of Hydrogen by Steam-Methane Reforming (SMR)

- Basis
 - 400 \$/t for capital and operation
 - 70 \$/t CO₂ for capture and sequestration (allowing for collateral CO₂ emissions)
 - 1 bbl oil = 6 GJ of natural gas

U. S. First Purchaser's Crude Oil Price

U. S. Wellhead Natural Gas Price

Cost of Continuous Electrolytic Hydrogen

- ~50 MW.h per tonne
- Cells cost 550 \$/kW or ~ 365 \$/t H₂
 (using 11.7%/a capital recovery 10%/a over 20 years)
- Operation adds ~ 137 \$/t H₂
- (Electricity costs 2310 \$/t H₂

(using average 2006/7 Ont. grid price)

- Value H₂ at 3280 \$/t
- Do-able but 2006/07 was an unusually a low-price period

 \sim 2800 \$/t H₂

The Price of Electricity Varies

Typical detail \rightarrow

Late July/ Early August

Making hydrogen intermittently

- Take real price data from Ontario (IESO)
- Set a conversion level for whole year
- Provide salt cavern storage (assumed 5000 \$/t)
- Use cells with some flexibility to vary current density
 - range of +/- 17%
 - which mildly influences cell voltage
- Feed data to a large EXCEL spreadsheet and optimize cost
 - Vary grid cost above which electricity will be sold
 - Vary cell capacity
 - Vary storage capacity
 - Never empty storage

Revenue from Electricity and H₂

Will it pay?

- Depends on the hydrogen value, of course
 - At \$3280/t H₂, any amount of hydrogen is more profitable than selling electricity
 - True for up to ~40% conversion down to about \$2500/t H₂
- Ontario electricity costs were unsustainably low in 2005/6
 - Averaging 46.2 \$/MW.h
 - Averaged68.5 \$/MW.h in 2005
- Price spreads as it average rises
- Replace coal with nuclear and price spread will rise more

Electricity prices vary ...

... but systems under strain can show bigger range

Alberta in 2005

What of the future?

- Analyses for both Ontario and Alberta give positive results for intermittent electrolytic hydrogen despite substantial variations in average prices of electricity
- Replacing load-following coal-fired stations with nuclear plants running continuously will tend toward increasing the range of peak – off-peak prices
- Can this scheme be extended to include windgenerated electricity?
 - Replace 20% of the electricity from nuclear with electricity from typical Ontario wind

Converting wind-derived electricity to H₂

 The three longest-established Ontario wind farms achieved 30.4% of nameplate capacity in 2006 July – 2007 June; a good performance

 Varies extensively: mild daily biases

and severe seasonal ones

Hydrogen from wind-produced electricity alone is very expensive

 Needs 234 days storage to maintain 	318 \$/t
supplies from April to December	
(compared to ~2 days for an	
unvarying power source)	
 Needs cell capacity 3.3 times more 	
cell capacity	1197 \$/t
 3.3 times higher operating cost 	450 \$/t
 No benefit from power interruptibility 	2282 \$/t
• TOTAL	4247 \$/t

But 20% wind and 80% nuclear blend easily with intermittent conversion

Only very slightly higher cost than nuclear alone

Even at \$2500/t H₂

Revenues in k\$/MW.a

		Profit on				
	Value of	H2 at		With	With	With
Converted	electricity	3280 \$/t	Total	20%	20%	20%
to H2	sold	H2	value	wind	wind	wind
100%	0	493	493			
80%	97	390	486	91	392	483
70%	139	341	480	140	339	479
65%	162	315	477			
60%	181	291	472	178	290	469
55%	202	266	468			
50%	228	239	467	224	237	461
45%	258	205	463			
40%	271	188	458	258	191	449
35%	292	161	453			
30%	310	137	447	308	135	443
20%	346	85	432			
0%	405	0	405			

Thermochemical Hydrogen

- High-temperature water splitting
 - Numerous possibilities with temperatures between 500 and 850°C
 - Early stages of development
 - May never be economic
- A future possibility but they won't be deployable until late 2020s
- Helium-cooled Very High Temperature Reactors (VHTRs) do not have containment

